# EVALUACION 2017 Y 2018 DE VARIEDADES SINTETICAS DE MAIZ DE ENDOSPERMA BLANCO QPM, NORMAL Y ZINC, EN DOS REGIONES DE HONDURAS, 2019.

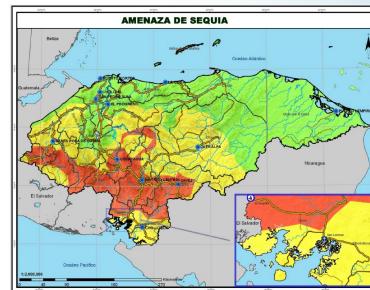


Del 29 de abril al 3 mayo del 2019, Hotel La Ensenada, Honduras.

**Oscar Cruz** 

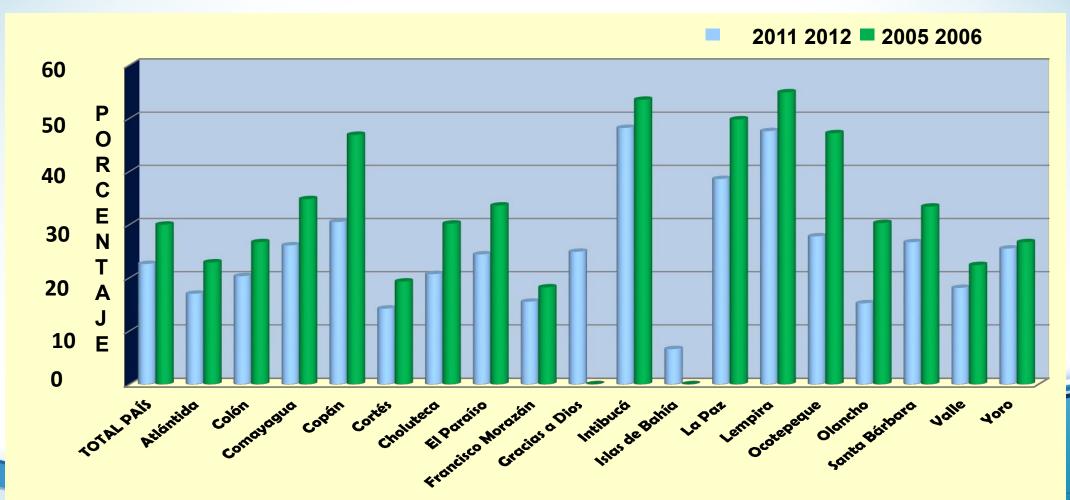





#### INTRODUCCION

 Las dos regiones (Choluteca y Comayagua), se encuentran ubicadas el corredor seco.

Una población de 250 mil familias, depende del maíz como consumo diario.


- Es una zona mayor afectada por el cambio climático.
- Perdida del cultivo de 35 a 100%.
- Desnutrición en niños menores de 5 años, (38%).





#### INTRODUCCION

Desnutrición Crónica en Niños y Niñas de 3 a 59 Meses de Edad por Departamento según el Índice Longitud o Talla para la Edad Datos (Datos Analizados según Patrones de la OMS 2006)



#### INTRODUCCION

#### EL ZINC, deficiencia.

- Retardo en el crecimiento
- Sistema inmunológica (Diarrea y Neumonía)
- Perdida de apetito y bajo rendimiento escolar.

#### **Esta presente:**

- Carnes, pescado, pollo, granos enteros, frutas y verduras no son habitualmente buena fuente.
- Una forma de mejorar la nutrición y la salud de esa población que no puede comprar suplemento, ni una gran variedad de alimentos es mediante la Biofortificacion.







# **Objetivo General**

• A través de los años, identificar una o dos variedades de maíz de grano blanco alto en zinc, superior o igual al testigo en rendimiento.











# **Hipótesis**

• Ho: T1 = T2

HA: T1 diferente T2







# **Materiales y Métodos**

Localidades: Sur

Choluteca: E.E La Lujosa, To de 34°C, 25msnm, pp. media anual 895mm, HR de 60%.

Comayagua: Centro

E.E. Playita, To de 27.6°C, 620msm, pp. media anual de 1300mm.

Combinado: Choluteca, Comayagua (2017, 2018)



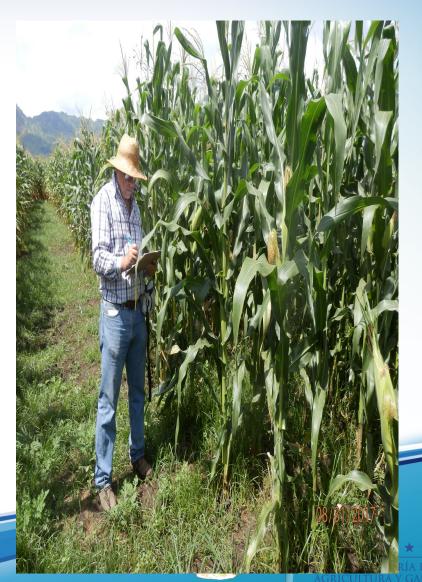


# **Materiales y Métodos**

Diseño experimental: B.C.A. con dos repeticiones/localidad.

· Área del ensayo: cuatro surcos/parcela de cinco metros de largo.

Distancia de siembra: 80 cm entre surco y 25 cm entre planta.


• Semillas/ metro lineal: cuatro, 50,000 plantas/Ha.



# **Materiales y Métodos**

#### Variables evaluadas

- Días a floración masculina
- Días a floración femenina
- Altura de planta
- Altura de mazorca
- % Acame de tallo
- % Acame de raíz
- % Cobertura de mazorca
- % Mazorcas podridas
- Planta por m2
- Rendimiento



# Cuadro 1. Variedades evaluadas, 2017, 2018

| Trat | Variedades        |
|------|-------------------|
| 1    | S16LTWQHZNHGAB01  |
| 2    | S16LTWQHZNHGAB02  |
| 3    | S16LTWQHZNHGAB03  |
| 4    | S16LTWQHZNHGAB04  |
| 5    | S16LTWQHZNHGAB05  |
| 6    | S16LTWQHZNHGAB06  |
| 7    | S16LTWQHZNHGAB07  |
| 8    | S16LTWQHZNHGAB01  |
| 9    | S16LTWNQHZNHGAB01 |
| 10   | S16LTWNQHZNHGAB02 |
| 11   | S16LTWNHZNHGAB01  |
| 12   | S16LTWNQHZNHGAB02 |
| 13   | S16LTWNHZNHGAB03  |
| 14   | S16LTWNHZNHGAB04  |
| 15   | S16LTWNHZNHGAB05  |
| 16   | S13LTWQHZNHGAB03  |
| 17   | S06LTWQHGAB02     |
| 18   | Testigo           |

| Trat | Variedades        |
|------|-------------------|
| 1    | S16LTWQHZNHGAB0 6 |
| 2    | S16LTWQHZNHGAB07  |
| 3    | S16LTWNQHZHGAB01  |
| 4    | S16LTWNQHZNHGAB02 |
| 5    | S16LTWNHZNHGAB02  |
| 6    | S16LTWNHZNHGAB04  |
| 7    | S16LTWNGAB03      |
| 8    | S16LTWNGAB04      |
| 9    | S16LTWNHGAB05     |
| 10   | S16LTWQHZNHGAB02  |
| 11   | Centa Pasaquina   |
| 12   | DICTA B04         |



# Discusión de Resultados





### Análisis de varianza de rendimiento de grano (QQ/M Z) por localidad, 2019A

| Análisis de varianza de rendimiento de grano (qq/mz), en dos localidades, 2018 |               |                       |             |                          |      |              |        |  |  |  |
|--------------------------------------------------------------------------------|---------------|-----------------------|-------------|--------------------------|------|--------------|--------|--|--|--|
| Región                                                                         | Localidad     | Estación Experimental | Media Tm/Ha | Dif. Entre<br>variedades | G.L. | CM del Error | % C.V. |  |  |  |
| Choluteca                                                                      | Lajero blanco | La Lujosa             | 3.7         | N.S.                     | 11   | 0.58         | 20.7   |  |  |  |
| Comayagua                                                                      | Playitas      | Playitas              | 8.7         | *                        | 11   | 0.56         | 8.6    |  |  |  |

| Analisis de varianza de rendimiento de grano (qq/mz), en dos localidades, 2017 |               |                       |             |                          |      |              |        |  |  |  |
|--------------------------------------------------------------------------------|---------------|-----------------------|-------------|--------------------------|------|--------------|--------|--|--|--|
| Región                                                                         | Localidad     | Estación Experimental | Media Tm/Ha | Dif. Entre<br>variedades | G.L. | CM del Error | % C.V. |  |  |  |
| Choluteca                                                                      | Lajero blanco | La Lujosa             | 4.9         | N.S.                     | 17   | 0.55         | 15.3   |  |  |  |
| Comayagua                                                                      | Playitas      | Playitas              | 6.7         | *                        | 17   | 0.28         | 8.0    |  |  |  |

Cuadro 4. Comportamiento agronómico de 18 variedades sintéticas de maíz de grano blanco QPM, Normal y alto en Zinc, Combinado, 2017

|       |                   | Rend   | Dias | Flor | Alt    | ura  | Posic/ |        | % Ac | ame  | %Maz/ | % Cob | % Sobre el |
|-------|-------------------|--------|------|------|--------|------|--------|--------|------|------|-------|-------|------------|
| Trat  | Variedades        | Tn/Ha  | Masc | Fem. | Plant. | Maz  | Maz    | Plt/m2 | Raiz | Tall | Pod   | Maz   | Testigo    |
| 7     | S16LTWQHZNHGAB07  | 6.5 A  | 56   | 57   | 200    | 91   | 0.46   | 6.0    | 1.1  | 7.3  | 5.5   | 5.8   | 54         |
| 9     | S16LTWNQHZNHGAB01 | 6.5 A  | 57   | 57   | 212    | 104  | 0.49   | 5.7    | 2.4  | 7.7  | 6.0   | 3.0   | 54         |
| 2     | S16LTWQHZNHGAB02  | 6.5 A  | 56   | 57   | 212    | 97   | 0.46   | 6.0    | 0.6  | 6.4  | 6.3   | 5.9   | 54         |
| 17    | S06LTWQHGAB02     | 6.3 A  | 56   | 56   | 198    | 90   | 0.45   | 6.0    | 4.6  | 4.4  | 3.2   | 5.1   | 50         |
| 1     | S16LTWQHZNHGAB01  | 6.1 A  | 56   | 56   | 202    | 94   | 0.47   | 5.6    | 0.0  | 4.6  | 11.3  | 6.7   | 45         |
| 12    | S16LTWNQHZNHGAB02 | 6.0 A  | 58   | 59   | 196    | 83   | 0.42   | 6.0    | 0.0  | 7.9  | 3.6   | 1.7   | 43         |
| 14    | S16LTWNHZNHGAB04  | 6.0 A  | 57   | 58   | 196    | 89   | 0.45   | 6.0    | 1.7  | 1.3  | 4.6   | 1.3   | 43         |
| 18    | Testigo           | 4.2    | 56   | 57   | 170    | 80   | 0.47   | 4.0    | 2.9  | 10.7 | 10.1  | 10.6  | 100        |
| Media |                   | 5.8    | 56   | 57   | 197    | 90   | 0.46   | 5.7    | 1.4  | 5.9  | 6.3   | 4.1   |            |
| G*A   |                   | N.S    | N.S  | N.S  | N.S    | *    |        | N.S    | N.S  | N.S  | *     | N.S   |            |
| C.V.  |                   | 11.3   | 2.1  | 2.5  | 6.4    | 11.3 |        | 8.3    | 36.6 | 46.1 | 23    | 35.6  |            |
| DMS   |                   | 0.9324 |      |      |        |      |        |        |      |      |       |       |            |





Cuadro 7 Comportamiento agronómico de 18 variedades sintéticas de maíz de grano blanco QPM. Normal v alto en Zinc. Combinado. 2018

| QFW, Normal y alto en Zinc, Combinado, 2010 |                |      |        |       |       |           |             |            |  |  |  |
|---------------------------------------------|----------------|------|--------|-------|-------|-----------|-------------|------------|--|--|--|
| Trat                                        | Rend Tm/Ha     | Días | a flor | Altur | a cms | Plant/m2  | %Maz pod    | % Sobre el |  |  |  |
|                                             | ixelia III/IIa | Masc | Fem    | Plant | Maz   | Fiant/inz | /olviaz pou | testigo    |  |  |  |
| S16LTWNQHZHGAB01                            |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 7.0 A          | 57   | 58     | 219   | 90    | 6.0       | 7.9         | 123        |  |  |  |
| S16LTWQHZNHGAB0 6                           |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 6.7 A          | 56   | 57     | 210   | 94    | 6.0       | 7.3         | 118        |  |  |  |
| S16LTWQHZNHGAB07                            |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 6.2 A          | 59   | 61     | 195   | 81    | 5.7       | 6.7         | 109        |  |  |  |
| S16LTWQHZNHGAB02                            |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 6.1 A          | 60   | 61     | 200   | 90    | 5.7       | 11.2        | 107        |  |  |  |
| S16LTWNQHZNHGAB02                           |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 6.1 A          | 59   | 60     | 202   | 88    | 5.6       | 8.2         | 107        |  |  |  |
| S16LTWNHZNHGAB04                            |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 6.0            | 59   | 61     | 194   | 83    | 6.0       | 5.2         |            |  |  |  |
| S16LTWNHZNHGAB02                            |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 5.8            | 58   | 60     | 196   | 85    | 5.6       | 7.2         |            |  |  |  |
| DICTA B04                                   |                |      |        |       |       |           |             |            |  |  |  |
|                                             | 5.7            | 54   | 55     | 208   | 87    | 5.8       | 12.4        | 100        |  |  |  |
| Centa Pasquina                              | 5.1            | 56   | 57     | 202   | 91    | 5.1       | 6.4         |            |  |  |  |
| Prom                                        | 6.2            | 57   | 59     | 205   | 88    | 5.8       | 7.2         |            |  |  |  |
| Δnava                                       | NS             | *    | *      | NS    | NS    | NS        | NS          |            |  |  |  |

Anava N.S. N.S. N.S. N.S. N.S. C.V. % 14.3 3.1 3.0 9.7 24.8 140.0 5.7 R2 0.93

#### **Conclusiones**

- La media de rendimiento para las 18 y 12 variedades en estudio fue de 5.8 , 6.2Ton/Ha.
- Se identificaron tres variedades en estudio alto en zinc, con buen potencial de rendimiento los cuales superan al testigo (4.2, 5.1ton/Ha) hasta un 54% respectivamente.
- De acuerdo a la interacción genotipo por ambiente no se encontró diferencia significativa para los año 2017, 2018. con un coeficiente de variación de 11.3, 24.8%.
- Las variedades identificadas fueron: S16LTWNQHZNHGAB01 (9,3), S16LTWQHZNHGAB07,(6,2), S16LTWQHZNHGAB02, (2,10), con rendimientos de 6.8, 6.4 y 6.3 Ton/Ha.

#### Recomendaciones:

- Las variedad alto en zinc S16-B01, S16-B07 Y S16-02, deberán pasar a la etapa de validación en finca de productores, 2019.
- 2020. Liberar una o dos variedades de maíz alto en zinc, para ponerlo a disposición de los pequeños productores del corredor seco de Honduras.



